2 research outputs found

    Estimation of potassium levels in hemodialysis patients by T wave nonlinear dynamics and morphology markers

    Get PDF
    Noninvasive screening of hypo- and hyperkalemia can prevent fatal arrhythmia in end-stage renal disease (ESRD) patients, but current methods for monitoring of serum potassium (K+) have important limitations. We investigated changes in nonlinear dynamics and morphology of the T wave in the electrocardiogram (ECG) of ESRD patients during hemodialysis (HD), assessing their relationship with K+ and designing a K+ estimator. Methods: ECG recordings from twenty-nine ESRD patients undergoing HD were processed. T waves in 2-min windows were extracted at each hour during an HD session as well as at 48 h after HD start. T wave nonlinear dynamics were characterized by two indices related to the maximum Lyapunov exponent (¿t, ¿wt) and a divergence-related index (¿). Morphological variability in the T wave was evaluated by three time warping-based indices (dw, reflecting morphological variability in the time domain, and da and daNL, in the amplitude domain). K+was measured from blood samples extracted during and after HD. Stage-specific and patient-specific K+ estimators were built based on the quantified indices and leave-one-out cross-validation was performed separately for each of the estimators. Results: The analyzed indices showed high inter-individual variability in their relationship with K+. Nevertheless, all of them had higher values at the HD start and 48 h after it, corresponding to the highest K+. The indices ¿ and dw were the most strongly correlated with K+ (median Pearson correlation coefficient of 0.78 and 0.83, respectively) and were used in univariable and multivariable linear K+ estimators. Agreement between actual and estimated K+ was confirmed, with averaged errors over patients and time points being 0.000 ± 0.875 mM and 0.046 ± 0.690 mM for stage-specific and patient-specific multivariable K+ estimators, respectively.ariability allow noninvasive monitoring of [K+] in ESRD patients. Significance: ECG markers have the potential to be used for hypo- and hyperkalemia screening in ESRD patient

    DataSheet1_Differences in ventricular wall composition may explain inter-patient variability in the ECG response to variations in serum potassium and calcium.pdf

    No full text
    Objective: Chronic kidney disease patients have a decreased ability to maintain normal electrolyte concentrations in their blood, which increases the risk for ventricular arrhythmias and sudden cardiac death. Non-invasive monitoring of serum potassium and calcium concentration, [K+] and [Ca2+], can help to prevent arrhythmias in these patients. Electrocardiogram (ECG) markers that significantly correlate with [K+] and [Ca2+] have been proposed, but these relations are highly variable between patients. We hypothesized that inter-individual differences in cell type distribution across the ventricular wall can help to explain this variability.Methods: A population of human heart-torso models were built with different proportions of endocardial, midmyocardial and epicardial cells. Propagation of ventricular electrical activity was described by a reaction-diffusion model, with modified Ten Tusscher-Panfilov dynamics. [K+] and [Ca2+] were varied individually and in combination. Twelve-lead ECGs were simulated and the width, amplitude and morphological variability of T waves and QRS complexes were quantified. Results were compared to measurements from 29 end-stage renal disease (ESRD) patients undergoing hemodialysis (HD).Results: Both simulations and patients data showed that most of the analyzed T wave and QRS complex markers correlated strongly with [K+] (absolute median Pearson correlation coefficients, r, ranging from 0.68 to 0.98) and [Ca2+] (ranging from 0.70 to 0.98). The same sign and similar magnitude of median r was observed in the simulations and the patients. Different cell type distributions in the ventricular wall led to variability in ECG markers that was accentuated at high [K+] and low [Ca2+], in agreement with the larger variability between patients measured at the onset of HD. The simulated ECG variability explained part of the measured inter-patient variability.Conclusion: Changes in ECG markers were similarly related to [K+] and [Ca2+] variations in our models and in the ESRD patients. The high inter-patient ECG variability may be explained by variations in cell type distribution across the ventricular wall, with high sensitivity to variations in the proportion of epicardial cells.Significance: Differences in ventricular wall composition help to explain inter-patient variability in ECG response to [K+] and [Ca2+]. This finding can be used to improve serum electrolyte monitoring in ESRD patients.</p
    corecore